

ANSWER KEY1REHEARSAL-2-2023-24 CLASS 12-PHYSICS SET-1

	JLI-1	
SL.NO	ANSWER KEY-SECTION A	
1.	(c) $2.4 \times 10^{-5} \text{ J}$	1
2.	(a) 30 cm from 9e	1
3.	(b) $\frac{C_1 V_1 + C_2 V_2}{C_1 + C_2}$	1
4.	(c)360 Ω	1
5.	(b) shape of loop	1
6.	(a) 64 T	1
7.	(b) sm^{-1}	1
8.	(d)Option (a) and (b)	1
9.	(c)Through 1 clockwise and through 2 anticlockwise as the induced current wants to decrease the change in magnetic flux.	1
10.	(b)The bulb glows brighter.	1
11.	(d) Violet	1
12.	(b) electron is bound to the nucleus.	1
13.	a) If both Assertion and Reason are true and Reason is correct explanation of Assertion.	1
14.	d) If both Assertion and Reason are false.	1
15.	a) If both Assertion and Reason are true and Reason is correct explanation of	1

ANSWER KEY2REHEARSAL-2-2023-24 CLASS 12-PHYSICS SET-1

	Assertion.	
16.	d) If both Assertion and Reason are false.	1
	SECTION B	
17.	Definition of conductivity. SI unit is mho m ⁻¹	1/2
	A= constant, as mentioned in the question	1/2
	So G is inversely proportional to 1.	1/2
	1 is halved then G becomes double.	1/2
	OR Resistance R of a wire of length l and cross sectional area A (thickness) is given by , $R = \rho l/A$ where $\rho = specific resistance of wire$	1/2
	for copper wire $R = \rho_c l / A_c$,	1/2
	for manganin wire $R = \rho_m l / A_m$	1/2
	$\frac{\partial p_{c}}{\partial r} = \frac{\rho_{m}}{\rho_{m}}$	1/2
	we know $\rho_m > \rho_c$ (as manganin is an alloy)	
	therefore $A_c < A_m$	
	Hence manganin wire is thicker.	
		1

ANSWER KEY3REHEARSAL-2-2023-24 CLASS 12-PHYSICS SET-1

18.	The internal resistance of battery is given by	
	$r=igg(rac{E}{V}-1igg)R=igg(rac{40}{30}-1igg) imes9=rac{9 imes10}{30}=3\Omega$	1 ½ + ½
19.	Using $\frac{1}{f_a} = (.^a \mu_g - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$	1/2
	Here, $f_a = 0.2m$, $\mu_g = 1.50$ $\therefore \frac{1}{0.2} = (1.50 - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right) \Rightarrow \frac{1}{R_1} - \frac{1}{R_2} = 10$	
	Consider f_w be the focal length of the lens , when immersed in water.	
	$u^w \mu_g = \frac{u^a \mu_g}{a \mu_g} = \frac{1.50}{1.33} = 1.128$	1/2
	Now, $\frac{1}{f_w} = \left(.^w \mu_g - 1 \right) \left(\frac{1}{R_1} - \frac{1}{R_2} \right) = (1.28 - 1) \times 10 = 1.28$	1/2
	or $f_w = rac{1}{1.28} = 0.78$	
	Hence, change in forcal length of the lens is	1/
	$f_w - f_a = 0.78 - 0.2 = 0.58m$	1/2
20.	The distance from the nucleus at which velocity of the alpha particle becomes zero is known as the distance of closest approach.	1
	Distance of closest approach is given by the formula.	
	$r_0=rac{1}{4\pi \in_0}. rac{2Ze^2}{K}$, where K = initial value of the kinetic energy of alpha-	1/2
	particle.	
	Thus, $r_0 \propto rac{1}{k}.$ Hence, if kinetic energy of a-particle is doubled to 2K, the	
	distance of the closest approach is reduced to $r_0/2$.	1/2
21.	Doping can increase the conductivity of the semiconductor, making it more suitable for use in electronic components.	1

	ANSWER KEY5REHEARSAL-2-2023-24 CLASS 12-PHYSICS SET-1	
	E = E = E = E = E = E = E = E = E = E =	1/2
	Electric field at point A $E_A = 2E \cos\theta$ Where $E = 2E \cos\theta$ we get $E_A = \frac{2q}{4\pi\epsilon - e^{-2}}\cos\theta$	1/2
	$\cos\theta = \frac{a}{\sqrt{a^2 + r^2}}$ on putting the value $E_A = \frac{2qa}{4\pi\epsilon_0 (r^2 + a^2)^{\frac{3}{2}}}$	1/2
	we know the dipole moment p=2qa hence $E_A = \frac{p}{4\pi\epsilon_0(r^2+a^2)^{\frac{3}{2}}}$ For a< <r, <math="" can="" neglect="" we="">a^2 compared to r^2</r,>	
	Hence final answer is $E_A = \frac{p}{4\pi\epsilon_o x^3}$	
23	 (a) Mutual inductance of two coils is equal to the emf induced in one coil when the rate of change of the current through the other coil is unity or it is equal to the amount of magnetic flux linked with one coil when unit current flow through the other coil. Its SI unit is Henry 	1
	Total number of turns in solenoid $N = nl$ Magnetic field inside the long solenoid $B = \mu_0 ni$	1/2
	Flux through one turn $\phi_1 = BA = \mu_0 niA$ Thus total flux through N turns $\phi_t = N\phi_1 = nl \times \mu_0 niA = \mu_0 n^2 lAi$ Using $\phi_t = Li$ where L is the self inductance of the coil $\therefore \mu_0 n^2 lAi = Li \implies L = \mu_0 n^2 A l$	1/2
		1/2

	SEI-1	
24.	A fission reaction is splitting up of a large atom or a molecule into two or more smaller ones. Fusion is the process of combination of two or more lighter atoms or molecules into larger ones.	1/2 1/2
	b) The potential energy (PE) vs separation graph is shown in the figure. $PE(MeV) = \frac{1}{2} + \frac{1}{2} + \frac{10^{-13} \text{ cm}}{3} + \frac{10^{-13} \text{ cm}}{3$	Diagram ½ + ½
	The conclusions drawn from the graph are - i) The nuclear force is a short-range force. ii) The nuclear force is repulsive when the separation is less 1 fm (1fermi=10 ⁻¹⁵ m) and it is attractive when the separation is greater than 1 fm.	¥2 ¥2

	ANSWER KEY8REHEARSAL-2-2023-24 CLASS 12-PHYSICS SET-1	
	(b)	
	$\{\downarrow\}$ wavelength of electromagnetic wave is $\lambda=rac{c}{ u}$	1/2
	here, c is speed of light .e.g.,c = 3 × 10^8 m/s	/-
	v is the frequency .e.g., $v = 2 \times 10^{10}$ Hz	
	so, λ=3 × 10^8/2 × 10^10	1/2
	= 1.5 × 10^-2 m = 1.5 cm	
27.	(a) At the face $AB, i=0^{0}$ and at the face $AC, i=60^{0}$	1/2
	(b) At the face AB – refraction,	1/2
	At the face AC – total internal reflection.	1/2
	At the face BC – refraction.	1/2
	P factor A B for a for	1/2 1/2

	ANSWER KEY9REHEARSAL-2-2023-24	
	SET-1	
28.	$r_n = \frac{\varepsilon_0 n^2 h^2}{\pi m Z e^2}$ Derivation of	1
	Derivation of vn	1
	$T = 2\pi r/v$ $T = 4\epsilon_0^2 n^3 h^3 / me^4$	1
	SECTION D	
29.	(I) (d) 30 mA (II)	1
	$ \begin{cases} (C) \\ \downarrow^{+5V} \\ \leq_{R} \end{cases} $	
		1
	(iii) (c) non ohmic device	1
	OR	
	(b) in the circuits (2) and (3) (iv) (d) 10^{-6}	1
30.	(i) (c) decreases	1
	(ii) (c)0.5D	L L
	(iii) b)20cm	1
	OR	
	(a) -10 D	1
	(iv) (d)Microscope will decrease but that of telescope will increase	-
	SECTION E	
31.	(a) Every point on a wavefront is in itself the source of spherical wavelets which spread out in the forward direction at the speed of light.	1
	(b)	

	ANSWER KEYLOREHEARSAL-2-2023-24 CLASS 12-PHYSICS	
	SET-1	
	Here , $\lambda = 600 nm = 6 imes 10^{-7} m$	1/2
	$a = 0.2mm = 2 imes 10^{-4}m, heta = ?$	1/2
	Angular width of central maxima,	1/2 + 1/2
	$ heta=rac{2\lambda}{a}=rac{2 imes 6 imes 10^{-7}}{2 imes 10^{-4}}=6 imes 10^{-3}$ rad	/ - + 1/2
	E E B Reflected wavefront	1- diagram
		1
	Derivation of I = r	
	UR UR	1
	(a) Explanation of Young's double slit experiment with diagram.(b) Conditions of constructive and destructive interference	1+1
	Given: Distance between slits = d = 0.8 mm = 0.8 x 10^{-3} m = 8 x 10^{-4} m. Distance between slit and screen = D = 1.2 m, Fringe width = X = 0.75 mm = 0.75 x 10^{-3} m = 7.5 x 10^{-4} m. To Find: Wavelength of light used = λ =?	
	Solution:	1/2
	The fringe width is given by $X = \lambda D/d$	1/2
	$ \therefore \lambda = Xd/D = (7.5 \text{ x } 10^{-4} \text{ x } 8 \text{ x } 10^{-4})/1.2 = 5 \text{ x } 10^{-7} \text{ m} = 5000 \text{ x } 10^{-10} \text{ m} = 5000 \text{ Å} $ Ans: Wavelength of light used is 5000 Å	1/2 1/2
32	The AC Generator works on the principle of electromagnetic induction. when the magnetic flux through a coil changes, an emf is induced in it. As the coil rotates in magnetic field the effective	1
1		1

ANSWER KEYLIREHEARSAL-2-2023-24 CLASS 12-PHYSICS SET-1

33.

$\Rightarrow \overrightarrow{V_{eff}} = \hat{i} V_R + \hat{j} (V_L - V_C)$ $\Rightarrow V_{eff} = \sqrt{ V_R ^2 + (V_L - V_C)^2}$	1
$\Rightarrow I_{eff} Z = \sqrt{(I_{eff} R)^2 + (I_{eff} X_L - I_{eff} X_C)^2}$ $\Rightarrow Z = \sqrt{R^2 + (X_L - X_C)^2}$ Effective current flow $I_{eff} = \frac{E_{eff}}{Z} = \frac{E_{eff}}{\sqrt{R^2 + (X_L - X_C)^2}}$	1
Definition of electrical resonance Resonance condition Xc = XL $\omega_r = \frac{1}{\sqrt{L C_{\odot}}}$	1 1
(a) Charge remains same, as after disconnecting capacitor no transfer of charge take place.	1/2
Electric field, E = $rac{\sigma}{arepsilon_0}=rac{q}{arepsilon_0A}$ remain same, as there is no change in charge.	1/2
$= \frac{q^2}{2\left(\frac{\varepsilon_0 A}{2\varepsilon_0 A}\right)} = \frac{q^2 d}{2\varepsilon_0 A}$	
Energy will be doubled as separation between the plates (d) is doubled.	1

C)	
Electrostatic energy stored in C1 is given by,	1/2
$\mathbf{E}_{\mathbf{i}} = \frac{1}{2} \mathbf{C}_{\mathbf{i}} \mathbf{V}_{\mathbf{i}}^2$	
$=\frac{1}{2} \times 4 \times 10^{-6} \times (200)^{2}$	1/
$= 8 \times 10^{-2} \mathrm{J}$	/2
Capacitance of an uncharged capacitor, $C_2 = 2\mu F = 2 \times 10^{-6} F$	
When C_2 is connected to the circuit, the potential acquired by it is V_2 .	
According to the conservation of charge, initial charge on capacitor C_1 is equal	
to the final charge on capacitors, C_1 and C_2	
$\therefore \mathbf{V}_2(\mathbf{C}_1 + \mathbf{C}_2) = \mathbf{C}_1 \mathbf{V}_1$	1/2
$V_2 \times (4+2) \times 10^{-6} = 4 \times 10^{-6} \times 200$	
$\mathbf{V}_2 = \frac{400}{3} \mathbf{V}$	
Electrostatic energy for the combination of two capacitors is given by,	
$E_{2} = \frac{1}{2}(C_{1} + C_{2})V_{2}^{2}$	
$= \frac{1}{2}(2+4) \times 10^{-6} \times \left(\frac{4^{00}}{3}\right)^2$	1/2
$= 5.33 \times 10^{-2} J$	
Hence, amount of electrostatic energy lost by capacitor C_i	
$= \mathbf{E_1} - \mathbf{E_2}$	
= 0.08 - 0.0533 = 0.0267	1/
$= 2.67 \times 10^{-2} J$	/2
